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I-5. Event Trees 

Key Concepts 

Event tree analysis is a commonly used tool in dam and levee safety risk analysis to 

identify, characterize, and estimate risk.  Quantitative estimates for probability of breach 

or failure and the resulting consequences can be obtained using event trees.  Qualitative 

depictions of potential failure modes and consequences can also be developed using event 

trees.  Event sub trees can be used to further evaluate specific events within the overall 

event tree structure.  Event sub trees are typically developed for individual potential 

failure modes to fully describe the sequence of events and/or conditions required to 

obtain failure.    

 

A logical progression of events is represented by the event tree beginning with an 

initiating event and continuing through to a set of outcomes.  A typical progression might 

include an initiating event (flood or earthquake) followed by a system response (breach 

or non-breach) resulting in potential consequences (life loss, economic).  Additional 

contributing events such as inoperable spillway gates (initiating event), flood fighting 

(system response), and exposure (consequences) should also be considered in the event 

tree.   

 

An event tree consists of a sequence of interconnected nodes and branches.  Each node 

defines a random variable that represents an uncertain event (a crack forms in the 

embankment) or state of nature (existence of adversely oriented joint planes).  Branches 

originating from a node represent each of the possible events or states of nature that can 

occur.  Probabilities are estimated for each branch to represent the likelihood for each 

event or condition.  These probabilities are conditional on the occurrence of the preceding 

events to the left in the tree.  Risks are typically annualized (e.g. probability of breach per 

year or annual life loss) in the event tree by using annual probabilities to characterize the 

loading conditions.  The conditional structure of the event tree allows the probability for 

any sequence of events to be computed by multiplying the probabilities for each branch 

along a pathway.  The branching structure of the event tree, which requires that all 

branches originating from a node be mutually exclusive and collectively exhaustive, 

allows the probability for any combination of events (e.g. total failure probability for a 

potential failure mode) to be computed by summing branch probabilities across multiple 

pathways.      

Terminology 

An example event tree structure is presented in Figure I-5-1.  Terms used to describe the 

event tree structure are illustrated in the figure and defined below. 
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Figure I-5-1.  Event Tree Terminology 

 

 

Branch – A possible event associated with a preceding chance node usually designated by 

a line segment.  Mathematically it represents a subset of the sample space for all possible 

outcomes associated with a random variable. 

 

Branch probability – The probability of the event represented by the branch conditioned 

on the occurrence of the events to its left in the event tree. 

 

Chance Node – A branching point in the event tree usually designated by a circle at the 

end of a branch indicating the occurrence of an unknown event. 

 

End Node – The outcome of a pathway belonging to the last level of branches in an event 

tree.  An end node defines a possible end state for a sequence of events. 

 

Pathway – A unique sequence of events representing a possible set of events.  

Mathematically it is the chain of random variable outcomes represented by the 

intersection of the events along the pathway. 

Branch Types 

A branch can be used to represent different types of random variables.  Terms used in the 

USACE DAMRAE software to describe common variable types are summarized below. 

 

Discrete – Discrete branch types represent discrete random variables.  An example would 

be a set of branches representing the number of spillway gates that are not operational.  

Each discrete outcome is represented by a separate branch in the event tree. 

 

Continuous – Continuous branch types represent continuous random variables.  An 

example would be a set of branches representing the annual peak water surface elevation, 

with each branch representing a range of elevations.   
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Continuous branch types need to be discretized for the event tree calculations.  This can 

be done manually using a spreadsheet or automatically using DAMRAE. 

 

State Function – State function branch types represent functions or variables that are 

estimated based on variables to the left in the event tree.  The state function can then be 

used to estimate variables to the right in the event tree.  For example, the overtopping 

depth might be defined as a function of the peak water surface elevation and the top of 

dam elevation.  The probability of failure by overtopping erosion can then be defined as a 

function of overtopping depth.  The use of state functions can increase transparency and 

simplify changes to the event tree.  For example, the event tree can be easily modified to 

evaluate a dam raise alternative by simply changing the top of dam elevation in the state 

function (assuming the dam  raise does not change the erosion characteristics of the dam 

or foundation). 

 

Failure – Failure branch types represent a discrete random variable with only two 

possible outcomes (breach or non-breach).  Failure probabilities are typically defined 

conditional on one or more of the loading parameters (e.g. water surface elevation or 

ground acceleration). 

 

Exposure – Exposure branch types represent a discrete random variable that is used to 

characterize the fraction of time that the population at risk might be exposed to 

inundation.  Typical exposure scenarios might include time of day (day, night), time of 

week (weekday, weekend), or time of year (summer, winter). 

 

Intervention – Intervention branch types represent a discrete random with only two 

possible outcomes (successful intervention or unsuccessful intervention). 

 

Consequences – Consequence branch types represent a discrete random variable that is 

used to characterize the magnitude of consequences (life loss, economic loss, 

environmental damage).  The inundation zone can be divided into multiple consequence 

centers to account for differences in warning time and evacuation.      

Event Tree Structure 

The starting point for an event tree is a defined event (or state of nature).  For dam and 

levee risk analysis, this is typically a loading event such as a flood or earthquake.  

Subsequent events are then defined using a divergent branching structure where each 

branch represents a unique event.  The branching structure is used to define all of the 

possible, but unknown, events that might occur.  The sequencing of events in the tree 

should be logical but does not necessarily need to be chronological. 

 

Branches and their associated branch probabilities that are statistically dependent on 

preceding events must be shown along pathways to the right of the events on which they 

are statistically dependent.  This is an important consideration in event tree construction 

because branch probabilities are mathematically defined as conditional probabilities.  

This also allows branch probabilities to be a function of a state variable in a preceding 

branch.  The event tree in Figure I-5-2 illustrates an example where the probability of 

failure is conditional on obtaining a particular water surface stage (S) during a random 

flood event.   
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Figure I-5-2.  Conditional Event Tree Probability 

 

The conditional structure of the event tree satisfies the probability calculus for 

statistically independent events; therefore, branch probabilities can be multiplied along a 

pathway to obtain the probability for the intersection of events along the pathway.  In the 

preceding example, the probability of failure can be computed as P(Stage) * 

P(Fail|Stage). 

 

Branches that originate from a chance node should be mutually exclusive and collectively 

exhaustive.  This makes each event and pathway unique (mutually exclusive) and ensures 

that all possible events and pathways are considered (collectively exhaustive).  A result of 

this requirement is that branch probabilities originating from a node can be summed and 

the total sum across all branches must equal one.  This provides a convenient validation 

check for the event tree structure.  This requirement is illustrated in Figure I-5-3. 

 

 
 

Figure I-5-3.  Mutually Exclusive and Collectively Exhaustive 

 

Branch probabilities within a particular level of the event tree can be summed to obtain 

an aggregate probability (or risk) associated with a set of related events.  The event tree 

in Figure I-5-4 illustrates the summation of potential failure mode pathway probabilities 

to obtain the total probability of failure for Flood Interval 1.  Total annualized life loss 

can be similarly obtained by multiplying the failure probability and associated 

consequences for each end branch and then summing across the end branches.  
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Figure I-5-4.  Total Probability of Failure for Flood Interval 1 

 

Potential Failure Mode Trees 

It is common practice to develop detailed event trees for individual potential failure 

modes to clearly identify the full sequence of steps required to obtain failure or breach.  

Each identified potential failure mode is decomposed into a sequence of component 

events and conditions that all must occur for the breach to develop.  This ensures that due 

consideration is given to each event in the failure sequence.  It also supports the 

identification of key issues contributing to the risk.  A typical event tree structure for an 

internal erosion potential failure mode is illustrated in Figure I-5-5.  A challenge with 

estimating probabilities for detailed event trees is remembering that each branch is 

conditional on predecessor branches.  For the typical internal erosion event tree, this 

means that the probability estimate for the continuation branch should be based on an 

assumption that the flaw already exists and initiation has already occurred even if the 

probabilities for a flaw and initiation are very small.  Examples and suggested event tree 

structures for common potential failure modes are provided throughout this manual.  The 

suggested event trees should be adjusted as needed to address site specific conditions. 

60.0% 0.108%

5 5

0.2% Chance

0 7.8

40.0% 0.072%

12 12

90.0% Chance

0 0.0316

60.0% 0.054%

10 10

0.1% Chance

0 16

40.0% 0.036%

25 25

60.0% 53.838%

0 0

99.7% Chance

0 0

40.0% 35.892%

0 0

Chance

0.28012

60.0% 0.03%

8 8

0.5% Chance

0 12.8

40.0% 0.02%

20 20

10.0% Chance

0 2.5168

60.0% 0.018%

20 20

0.3% Chance

0 24

40.0% 0.012%

30 30

60.0% 5.952%

2 2

99.2% Chance

0 2.4

40.0% 3.968%

3 3

Example

Flood Interval 1

Flood Interval 2

Failure Mode 1

Exposure 1

Exposure 2

Failure Mode 2

Exposure 1

Exposure 2

Failure Mode 2

Exposure 1

Exposure 2

Failure Mode 1

Exposure 1

Exposure 2

Non-Breach

Exposure 1

Exposure 2

Non-Breach

Exposure 1

Exposure 2

S = 0.003



I-5-6 

 

 
 

Figure I-5-5.  Suggested Internal Erosion Potential Failure Mode Sub Tree 

 

System Response 

System response (or probability of failure) describes the relationship between the demand 

(i.e. driving forces or loads) that a system is subjected to and the capacity (i.e. resisting 

forces or strength) of the system to withstand the demand.  The limit state (Z) for a 

system can be defined by the equation below as the difference between the capacity (R) 

and demand (S). 

 

      
 

The probability of failure or breach for a system is the probability that the capacity is less 

than or equal to the demand, P(R≤S), or the probability that the limit state is less than or 

equal to zero, P(Z≤0). 

 

The factor of safety can be defined by the equation below as the ratio of capacity to 

demand.   

  

   
 

 
 

 

The probability of failure or breach for a system is the probability that the factor of safety 

is less than or equal to one (FS≤1).  Depending on the method of analysis, a factor of 

safety less than one may or may not be the most appropriate limit state for estimating the 

probability of failure.  The analyst must be mindful of the fact that all analytical methods 

and models are only simplified approximations of reality.  Some analytical methods may 

be more conservative than others in their formulation and assumptions.   

 

Evaluation of system response is a bit more mathematically cumbersome with the factor 

of safety formulation because of the ratio.  For this reason, the limit state formulation 
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expressed as the difference between capacity and demand will be used for purposes of 

this section. 

 

Both the demand and capacity are uncertain; however, system response is typically 

evaluated assuming the demand is known.  Uncertainties in the demand can be evaluated 

in the loading branches of the event tree separately from the potential failure mode 

branches.  If the demand is assumed to be known, then the conditional probability of 

failure or breach for a given load can be defined by the equation below where fR(r) is the 

probability density function for capacity and FR(s) is the cumulative distribution function 

for capacity. 

 

                           

 

  

       

 

The cumulative distribution function for the capacity of the system provides the 

conditional probability of failure or breach for a specified demand.  The probability of 

failure or breach for a given demand is the probability that the capacity is less than or 

equal to the demand.  This means that the probability of failure or breach is the 

probability that failure or breach will occur at a loading that is less than or equal to the 

specified loading.  The cumulative distribution function characteristic of the system 

response is important to understand because system response is often incorrectly 

interpreted to be the probability of failure or breach given the load instead of the 

probability that failure will occur at a load less than or equal to the given load.  This can 

be a factor to consider during event tree analysis because event trees are typically 

constructed to assume that failure or breach occurs at the peak load.  In some situations, 

the event tree structure may need to be modified to account for the possibility that failure 

or breach can occur at a load less than the peak load during loading events with a 

temporal component such as floods and earthquakes.  Refer to Chapter 35 – Combining 

and Portraying Risks – System Response for an example. 

 

System Response Curves 

When system response is evaluated over a range of loads, the resulting relationship is 

called a system response curve.  Other terms describing this relationship, such as a 

‘fragility curve’, may be found in other literature.  The term ‘fragility’ is intentionally not 

used in this manual for dam and levee safety due to the negative connotation that results 

from referring to a dam or levee as being ‘fragile’. 

 

Potential failure mode sub trees can be used to develop system response curves that 

describe the probability of failure or breach as a function of one or more loading 

parameters such as peak water surface elevation or peak ground acceleration.  The failure 

mode event tree is evaluated for multiple loading scenarios.  Branch probabilities that are 

dependent on the magnitude of the load are modified for each loading scenario.  These 

probabilities can be estimated for the nodes of a potential failure mode sub tree using a 

combination of analytical, empirical, and subjective methods.  The number and spacing 

of load scenarios should be sufficient to describe the shape of the system response curve 

over the full spectrum of potential loads paying careful attention to transitions in system 

behavior.  It is important to identify and include inflection points in the system response 
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curve that represent significant changes in system behavior.  A curve can be fit to the 

resulting data from each of the potential failure mode sub trees so that the probability of 

failure can be estimated for any load condition by interpolation.  An example system 

response curve is presented in Figure I-5-6. 

 

 
Figure I-5-6.  System Response Curve 

 

Consequence Trees 

Detailed event trees can be developed for consequence scenarios.  These event trees 

typically include exposure scenarios to clearly identify the conditions that could lead to 

different magnitudes of consequences.  This ensures that due consideration is given to the 

factors that may influence consequences.  It also supports the identification of the key 

issues contributing to the risk.  A suggested event tree structure for exposure is illustrated 

in Figure I-5-7.  The suggested structure proceeds from the longest exposure case 

(season) toward the left of the tree to the shortest exposure case (time of day) toward the 

right of the tree so that the overall size of the event tree is minimized.  This example 

reflects estimation of non-breach consequences.  Reclamation typically does not evaluate 

non-breach consequences but the structure of the example event tree would also apply to 

breach consequences. 
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Figure I-5-7.  Suggested Consequence Sub Tree 

 

Event Tree Construction 

Each branch in the event tree should be clearly defined and representative of a specific 

event or state of nature.  Parallel components can be aggregated into a single event if 

different combinations are inconsequential to the risk analysis.  For example, it might be 

sufficient to represent failure of a spillway gate in one branch if it doesn’t matter which 

particular spillway gate fails.  Events that could influence other system components 

should generally be toward the left of the event tree to reduce the overall tree size.  

Constructing the event tree in chronological order is not required mathematically, but it 

usually improves the logic which can facilitate understanding and communication.  The 

event tree structure should be designed to accommodate future needs such as the 

evaluation of risk reduction alternatives to minimize duplication of effort and provide 

consistency in the risk estimates across multiple phases of study.  Avoid detailed 

development of branches that do not lead to outcomes important to the risk estimate or 

risk management decisions.  Care should also be taken to avoid situations where the risk 

becomes a function of the number of branches in the event tree (i.e. adding more 

branches to obtain a lower risk estimate).  Multiple branch levels can be combined into a 

single branch level when the added resolution does not significantly improve the 

understanding, estimation, or portrayal of risks.  Events with relatively low and 

inconsequential probabilities can also be excluded from the event tree.  Care should be 

taken to avoid underestimating the risk if many branches are excluded or if the excluded 

branches could be important to follow on risk estimates (e.g. alternative evaluation).  
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Common Cause Adjustment 

Full enumeration of all possible events in an event tree can become unwieldy and is 

usually unnecessary. 

 

Consider a dam with the following three seismic induced potential failure modes: A) 

sliding within the foundation of a concrete gravity monolith, B) buckling of a spillway 

gate arm, and C) liquefaction of the foundation leading to crest deformation and 

overtopping.  The probability of failure for each of these potential failure modes has been 

estimated assuming the potential failure modes are statistically independent. 

 

P(A) = 0.3 

P(B) = 0.1 

P(C) = 0.2 

 

A total of seven permutations might be obtained from combinations of the three potential 

failure modes plus one permutation for the non-breach outcome.  These permutations are 

mutually exclusive and collectively exhaustive.  The permutations are listed below and 

depicted in the Venn diagram in Figure I-5-8. 

 

1. Breach by A only {A, B̄ , C̄ } 

2. Breach by B only {Ā , B, C̄ } 

3. Breach by C only {Ā , B̄ , C} 

4. Breach by A and B {A, B, C̄ } 

5. Breach by A and C {A, B̄ , C} 

6. Breach by B and C {Ā , B, C} 

7. Breach by A, B, and C {A, B, C} 

8. Non-breach {Ā , B̄ , C̄ } 

 

 

Figure I-5-8.  Venn Diagram for Potential Failure Mode Permutations 
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The probability for each permutation can be computed as the intersection of the three 

events within each permutation by multiplying the underlying probabilities (assuming 

that A, B, and C are statistically independent).  The probabilities for permutations that 

include a breach can then be summed to obtain the total probability of breach for the 

system.  Note that the probability of a potential failure mode not occurring is equal to one 

minus the probability of breach [ P(Ā ) = 1- P(A)]. 

 

1. P(A ∩ B̄ ∩ C̄ ) = 0.3 * 0.9 * 0.8 = 0.216 

2. P(Ā ∩ B ∩ C̄ ) = 0.7 * 0.1 * 0.8 = 0.056 

3. P(Ā ∩ B̄ ∩ C) = 0.7 * 0.9 * 0.2 = 0.126 

4. P(A ∩ B ∩ C̄ ) = 0.3 * 0.1 * 0.8 = 0.024 

5. P(A ∩ B̄ ∩ C) = 0.3 * 0.9 * 0.2 = 0.054 

6. P(Ā ∩ B ∩ C) = 0.7 * 0.1 * 0.2 = 0.014 

7. P(A ∩ B ∩ C) = 0.3 * 0.1 * 0.2 = 0.006 

8. P(Ā ∩ B̄ ∩ C̄ ) = 0.7 * 0.9 * 0.8 = 0.504 

 

The total probability of breach is equal to 

 

0.216 + 0.056 + 0.126 + 0.024 + 0.054 + 0.014 + 0.006 = 0.496 

 

This result is the same as the estimate that can be obtained using deMorgan’s rule. 

 

                                    

 

   

 

 

                                      
 

The total probability of non-breach is equal to the probability for permutation number 

eight or it can be estimated as one minus the total probability of breach. 

 

1 - 0.496 = 0.504 

 

As a check, note that the sum of the probabilities for breach and non-breach is equal to 

one which satisfies the probability calculus for mutually exclusive and collectively 

exhaustive events. 

 

A complete event tree would include each of the possible permutations and their 

associated probabilities.  The probabilities for each permutation can be directly applied 

with no adjustment, if every permutation is explicitly enumerated as a separate branch in 

the event tree.  The probabilities for the branches can be summed because the branches 

satisfy the requirement of being mutually exclusive and collectively exhaustive.  Event 

tree branches for the eight permutations in the example are illustrated in Figure I-5-9. 
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Figure I-5-9.  Potential Failure Mode Permutations 

 

The number of event tree branches can quickly become unwieldy in a risk analysis if all 

permutations are enumerated.  When scenarios with multiple breaches are included, 

attribution of the risk back to the individual potential failure modes can be confusing for 

both the risk analyst and the decision maker.  Fortunately, there are some logical steps 

that can be taken to simplify the event tree structure.  If the occurrence of multiple 

breaches is unlikely, then these permutations can be eliminated from the event tree.  For 

dams, this is often a reasonable assumption given that the reservoir is likely to drain 

quickly following initiation of the first potential failure mode.  The subsequent reduction 

in load makes the initiation of additional potential failure modes unlikely.  The chance for 

two potential failure modes occurring simultaneously on dam is usually remote.  For 

levees, initiation of the first potential failure mode may lead to flooding of the leveed area 

which can reduce the differential load thus reducing the potential for initiation of 

additional failure modes.  This assumption may not be reasonable for long levees with 

large leveed areas that are subjected to long duration events.  In these situations the load 

may not be reduced by a single breach of the levee and subsequent breaches may be 

plausible because the load occurs over a long duration or flooding of the leveed area does 

not reduce the differential load.  Permutations with multiple breaches can also be 

eliminated when the consequences due to multiple breaches are not significantly different 

than the consequences due to a single breach.  This may be a reasonable assumption for 

dams if the first failure inundates the entire downstream floodplain or for levees if the 

first failure floods the leveed area. 

 

From the previous example, the following four permutations would remain if multiple 

breaches are believed to be unlikely and/or inconsequential to the risk estimate. 

 

1. Breach by A only {A, B̄ , C̄ } 

2. Breach by B only {Ā , B, C̄ } 

3. Breach by C only {Ā , B̄ , C} 

4. Non-breach {Ā , B̄ , C̄ } 
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Trimming event tree branches in this manner requires that the probabilities associated 

with the branches containing multiple breaches be allocated back to the remaining 

branches associated with the individual potential failure modes.  This must be done to 

maintain the correct total probability and to ensure that the remaining events will be 

mutually exclusive and collectively exhaustive.  In the Venn diagram, this is equivalent 

to allocating the overlapping areas back to the individual potential failure mode 

outcomes.  Allocation of the overlapping areas is illustrated in Figure I-5-10. 

 

 

Figure I-5-10.  Allocating Multiple Breaches to Individual Potential Failure Modes 

 

Hill et al (2003) have proposed a simplified approach for allocating the probabilities 

associated with the overlapping areas back to the individual potential failure modes.  This 

is the method used by both Reclamation and USACE.  The method distributes the 

overlapping area proportional to the probability of failure for each potential failure mode.  

Larger probabilities of failure receive a larger portion of the overlapping area.  The 

approach is implemented using the following equation where     is the unadjusted 

probability of failure for potential failure mode j and   
  is the adjusted probability of 

failure. 

 

  
    

         
 
   

   
 
   

 

 

  For the example, the adjusted probabilities of failure are 
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The sum of the adjusted probabilities is now equal to the correct total probability of 

failure 

 

0.248 + 0.083 + 0.165 = 0.496 

 

The adjusted probabilities can now be used in a pruned event tree that includes the three 

individual potential failure mode permutations and the non-breach permutation.  The 

pruned event tree is illustrated in Figure I-5-11. 

 

 
 

Figure I-5-11.  Event Tree After Pruning 

 

An alternative method for allocating the overlapping area back to the individual potential 

failure modes would be to explicitly decide how much of the overlapping area to allocate 

to each potential failure mode permutation.  One approach might be to distribute the 

overlaps equally among the contributing potential failure modes based on an assumption 

that each potential failure mode is equally likely to initiate first.  We start with the same 

eight permutations previously developed for the seismic potential failure mode example.  

 

1. P(A ∩ B̄ ∩ C̄ ) = 0.3 * 0.9 * 0.8 = 0.216 

2. P(Ā ∩ B ∩ C̄ ) = 0.7 * 0.1 * 0.8 = 0.056 

3. P(Ā ∩ B̄ ∩ C) = 0.7 * 0.9 * 0.2 = 0.126 

4. P(A ∩ B ∩ C̄ ) = 0.3 * 0.1 * 0.8 = 0.024 

5. P(A ∩ B̄ ∩ C) = 0.3 * 0.9 * 0.2 = 0.054 

6. P(Ā ∩ B ∩ C) = 0.7 * 0.1 * 0.2 = 0.014 

7. P(A ∩ B ∩ C) = 0.3 * 0.1 * 0.2 = 0.006 

8. P(Ā ∩ B̄ ∩ C̄ ) = 0.7 * 0.9 * 0.8 = 0.504 

 

The overlap is then equally distributed among the contributing potential failure modes. 

 
1. P(A) = P(A ∩ B̄ ∩ C̄ ) + 1/2 P(A ∩ B ∩ C̄ ) + 1/2 P(A ∩ B̄ ∩ C) + 1/3 P(A ∩ B ∩ C) = 0.257 

2. P(B) = P(Ā ∩ B ∩ C̄ ) + 1/2 P(A ∩ B ∩ C̄ ) + 1/2 P(Ā ∩ B ∩ C) + 1/3 P(A ∩ B ∩ C) = 0.077 

3. P(C) = P(Ā ∩ B̄ ∩ C) + 1/2 P(A ∩ B̄ ∩ C) + 1/2 P(Ā ∩ B ∩ C) + 1/3 P(Ā ∩ B̄ ∩ C̄ ) = 0.162 

 

The sum of the adjusted probabilities is now equal to the correct total probability of 

failure. 
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0.257 + 0.077 + 0.162 = 0.496 

 

Note that different methods will result in different adjusted probability values.  It is 

important that the facilitator documents the methods and assumptions that are used to 

adjust probabilities.  

 

Hill et al (2003) recommend freezing the adjusted probability values when a dam or levee 

is estimated to fail prior to a possible higher loading condition to avoid unrealistic 

adjustments for potential failure modes at the higher loads.  The adjusted probabilities are 

frozen at the first loading interval for which an unadjusted probability equals one.  

Freezing is suggested for flood loading scenarios because the load develops gradually 

such that the dam would fail prior to reaching the higher load condition.  Freezing is not 

suggested for seismic potential failure modes because the load develops more rapidly 

such that peak load conditions can still be obtained prior to failure.  Consequence 

estimates can also be frozen in a similar manner to avoid unrealistic consequences for 

flood events greater than the event at which the dam is expected to fail.  Figure I-5-12 

illustrates the freezing concept applied to two system response curves. 

 

 

Figure I-5-12.  Probability Adjustment Without and With Freezing 

 

Partitioning 

Event trees are comprised of a discrete number of branches.  For flood and seismic loads, 

a suggested approach is to divide the loading into discrete intervals.  The probability for a 

load interval can be computed from the exceedance probability curve as the difference 

between the exceedance probabilities at the upper and lower bound of the interval.  A 

representative index value can be estimated for each loading interval.  The index value is 

typically estimated as an average of the upper and lower bound values.  For flood and 

seismic loading intervals, the geometric mean (obtained by taking the square root of the 

product of the upper and lower bound probabilities)  is suggested as a reasonable 

representative value because these random variables tend to be lognormally distributed.  

The partitioning concept is illustrated in Figure I-5-13.   
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Figure I-5-13.  Event Tree Load Intervals 

  

Index points can be used in subsequent event tree branches to estimate probability of 

failure and consequences for each interval.  The number and spacing of the intervals 

affects the numerical precision of the risk estimate.  The objective is to define enough 

intervals at a spacing that adequately characterizes the shapes of the various event tree 

input functions.  More intervals will improve numerical precision, but can increase the 

event tree size and computation burden.  When a large number of intervals are used, end 

branches can be aggregated into logical bins by summation to facilitate interpretation and 

communication of results.  An examination of event tree probabilities such as probability 

of failure and other values such as consequences at both the lower and upper bounds of 

each interval can provide insights as to whether or not the intervals are appropriately 

sized.  A significant change from the lower to the upper bound might indicate a need for 

more intervals. 

 

The partitions should also consider a non-exceedance and an exceedance interval.  The 

non-exceedance interval can be established based on a threshold loading below which the 

probability of failure and consequences are negligible.  This becomes the bottom end of 

the lowest load range for which risks are estimated.  The lower bound for the non-

exceedance interval should be an annual exceedance probability of 1 and the upper bound 

should be defined by the threshold event.  While simple in concept, the selected threshold 

value can have a significant influence on the estimated risks.  Sensitivity analysis is 

suggested to evaluate whether refinement of the selected threshold is needed.  The 

exceedance interval establishes the largest loading condition for which risks are 

estimated.  It is important to assess whether or not there are any significant risks 

attributable to extreme loading that may be associated with high probabilities of failure.  

Would the risk significantly change if an additional higher loading interval was added to 

the analysis?  If agency policy establishes an upper bound for loading (e.g. probable 

maximum flood), then the exceedance interval can be defined based on policy.  The 

Interval

Index Value

Non-Exceedance Interval

Exceedance Interval

Flood Intervals

EL 1671.5, P=0.5

EL 1673.5, P=0.4

EL 1679.2, P=0.09

EL 1685.5, P=0.009

EL 1691.5, P=0.0009

EL 1695.0, P=0.0001

Lower Bound Upper Bound Index Value Lower Bound Upper Bound Probability

n/a 1671.5 1671.5 1 0.5 0.5

1671.5 1675.5 1673.5 0.5 0.1 0.4

1675.5 1683.0 1679.2 0.1 0.01 0.09

1683.0 1688.0 1685.5 0.01 0.001 0.009

1688.0 1695.0 1691.5 0.001 0.0001 0.0009

1695.0 n/a 1695.0 0.0001 0 0.0001

Elevation Probability
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lower bound for the exceedance interval is the threshold for the largest loading that will 

be considered and the upper bound should be an annual exceedance probability of zero.       

Intervention 

Intervention includes those actions that can lead to preventing a breach from occurring or 

mitigating the consequences of a breach.  Successful intervention requires taking actions 

to detect a developing failure mode and then taking actions to stop further development 

of the failure mode.  Two phases of intervention are typically considered for possible 

inclusion in the event tree.  The first phase of intervention includes routine and non-

routine actions such as surveillance, inspection, monitoring, instrumentation, and flood 

fighting.  The first phase includes the increased surveillance and monitoring activities 

that normally occur during flood events, or that could be implemented in response to 

unexpected performance.  Some of the flood fighting activities that might be consistent 

with the first phase of intervention include actions like sandbagging boils, constructing 

filters, constructing stability berms, and repairing shallow slope failures.  These actions 

occur during the early stages of failure mode development when development to breach 

is not certain and/or may take a long time (weeks to years).  Actions to prevent breach 

during the first phase of intervention generally have a higher likelihood of success.  The 

second phase of intervention includes emergency actions that are taken as a last ditch 

effort to prevent breach.  These emergency actions occur during the later stages of failure 

mode development when development to breach is virtually certain and imminent (hours 

to days).  The second phase includes things like dumping erosion resistant materials to 

slow the advancement of a headcut, intentional breaching of the system in a less 

damaging location to reduce consequences, or maximizing releases from a reservoir to 

stop or slow progression of a failure mode in progress, or slow breach development and 

reduce consequences.  Actions to prevent breach during the second phase of intervention 

generally have a lower likelihood of success.  

    

Some questions to consider when evaluating intervention include: 

 

 What methods are available for detecting failure modes? 

Are the detection methods appropriate for the failure mode being 

evaluated? 

Are the monitoring instruments appropriate? 

Are the instruments maintained and in good working order? 

Are the instrument indicators/thresholds appropriate? 

How often is the instrumentation data evaluated? 

How often are inspections conducted? 

Are the personnel conducting the inspections and/or interpreting 

instrument data trained to detect failure modes?  

 What methods are available to arrest failure mode development?    

What methods have been successful in the past? 

What methods have been unsuccessful in the past? 

Are resources available (manpower, equipment, materials)? 

 Is there enough time for detection and action? 

  

Intervention actions can be included in the event tree in a variety of ways depending on 

the fidelity needed in the risk analysis.  A common approach is to aggregate intervention 

actions into a single event tree branch.  When more resolution is needed, separate 
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branches can be included for each intervention phase.  This allows a distinction to be 

made between actions that are more likely to be successful (first phase) and actions that 

are less likely to be successful (second phase).  The probability of successful intervention 

may also be easier to estimate if the two phases are considered separately. 

Uncertainty 

Risk estimates should give due consideration for uncertainty and sensitivity.  Two 

important questions to consider when evaluating and communicating uncertainty are: 

 

 Does the uncertainty significantly impact the decision? 

 Can the uncertainty be reduced?    

 

Key areas of uncertainty and sensitivity should be identified and portrayed.  This can be 

accomplished using a variety of qualitative and quantitative techniques.  Most of the 

techniques used in event tree analysis are quantitative. 

 

Sensitivity analysis can be used to evaluate how different assumptions influence the risk 

estimate.  It provides a way to evaluate alternative outcomes if a situation turns out to be 

different than anticipated.  Evaluation of the alternative outcomes can facilitate the 

identification of key assumptions and the potential value added by additional study.  For 

example, investigations to assess the slip rate for a fault may not be justified if the risk 

estimate is not sensitive to this parameter or if the uncertainty in the risk estimate will not 

be reduced.  Reasonable best case and reasonable worst case assumptions can be used as 

a starting point for the sensitivity analysis.  Sensitivity analysis typically only considers a 

limited number of parameters for each scenario.  Combining worst (or best) case 

assumptions for all parameters are not recommended because the probability that all 

parameters are unfavorable (or favorable) is usually remote.  

 

Uncertainty analysis can be accomplished by using probability distributions to define 

event tree variables.  This is done to characterize the knowledge uncertainty in the event 

tree inputs.  This uncertainty can, at least in theory, be reduced by acquiring more 

information.  Distributions that are commonly used in dam and levee safety risk analysis 

include uniform, triangular, normal, and log-normal.  The distributions can be applied to 

variables such as peak reservoir stage, peak ground acceleration, probability of failure, 

and consequences.  Monte carlo simulation techniques can be used to generate random 

samples from these distributions.  Probabilities and risks are calculated for many random 

samples (typically 10,000 or more) to characterize the uncertainty in the risk estimate.  It 

is not always practical or possible to quantify all sources of uncertainty; therefore, it is 

important to document the significant uncertainties that were included in the event tree 

analysis and those that were not included. 

 

Natural variability (aleatory uncertainty) associated with random events such as floods or 

earthquakes is typically accounted for in the event tree by considering the full range of 

plausible events along with their associated probability of occurrence.  This is the most 

common technique used by USACE and Reclamation for dam and levee risk analysis.  

An alternative technique would be to develop and run a simulation model that randomly 

selects a flood or earthquake event for each year of the simulation.  Many years can be 

simulated to capture the full range of possible loading events. 
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Monte Carlo Simulation 

Monte Carlo simulation is a mathematical technique that is used to evaluate uncertainty 

in risk analysis.  It provides a means to evaluate the uncertainty in a risk estimate by 

combining the uncertainties for all of the event tree inputs.  Commercial software such as 

@Risk, Crystal Ball, and many others can be used to perform the calculations.  A monte 

carlo simulation samples a possible value for each random variable in an event tree based 

on its probability distribution.  A variety of sampling methods are available.  One 

approach is to sample a random number that is greater than or equal to zero and less than 

or equal to one.  A separate random number is generated for each random variable in the 

analysis.  The random number can then be applied to the cumulative distribution function 

as a cumulative probability to obtain a sample value for the random variable.  If enough 

samples are taken, the resulting distribution of the random variable samples will exactly 

match the probability distribution from which the values were sampled.  

 

Each sample produces a single estimate of the risk.  The sampling process is repeated 

many times to obtain many estimates of the risk.  If enough samples are taken, the 

sampled estimates of risk can be used to portray a probability distribution of the risk.  It is 

not uncommon in dam and levee safety risk analysis that 10,000 or more samples are 

required to obtain a reasonable result.   The sampled estimates of risk can be portrayed in 

various ways to assess and communicate the uncertainty in the risk estimate.  A common 

approach is to show each sampled risk estimate as a point on the f-N chart along with the 

mean value of the risk samples.  The resulting cloud of points can provide risk analysts 

and decision makers with information on the magnitude of uncertainty.  Confidence 

intervals can also be estimated from the sampled risk estimates to characterize the 

probability that the risk estimate will fall either above or below risk guidelines. 

 

Consider the following example for a potential failure mode that could initiate at flood 

loadings greater than a 10 year flood.  The conditional probability of failure was 

estimated by expert elicitation and the uncertainty in the estimate is described by a 

triangular distribution with a lower bound of 0.00001, an upper bound of 0.0005, and a 

best estimate (mode) of 0.0002.  Potential life loss was estimated from an analytical 

model and the uncertainty in the estimate is described by a triangular distribution with a 

lower bound of 60, an upper bound of 120, and a best estimate (mode) of 80.  An event 

tree with supporting spreadsheet calculations is illustrated in Figure I-5-14.  

PrecisionTree and @Risk were used to develop the event tree and perform the monte 

carlo simulation calculations.  The PrecisionTree model settings for @Risk simulation 

were set to ‘expected values of the model’ as illustrated in Figure I-5-15.   The 

conditional probability of failure and consequences were input using the ‘define 

distribution’ feature in @Risk.  The annual probability of failure (e.g. value of ‘f’ for the 

f-N chart) is equal to the total probability along the breach pathway obtained by 

multiplying the probability of the flood by the probability of failure.  The value of ‘N’ for 

the f-N chart is simply the life loss associated with a breach.  
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Figure I-5-14.  Event Tree for Monte Carlo Simulation Example 

 

 
 

Figure I-5-15.  Precision Tree Settings for Monte Carlo Simulation Example 

 

A 1000 iteration monte carlo simulation was performed on the event tree using @Risk.  

The results are presented on the f-N chart in Figure I-5-16.  The mean estimate was 

obtained by taking the arithmetic average of the monte carlo simulation results.  The best 

estimate was obtained by using the best estimate values shown in Figure I-5-14.  

Although the monte carlo simulation results straddle the risk guidelines, both the mean 

estimate and best estimate are above the guidelines.  It is important to know that the mean 

risk estimate from a monte carlo simulation will often be different than the risk estimate 

obtained from best estimate values.  By counting the number of monte carlo simulation 

results that are above the guidelines (874) and dividing by the total number of monte 

carlo simulations (1000), the risk analyst might conclude that there is a relatively high 

degree of confidence (about 87%) that the risk exceeds the guidelines. 
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Figure I-5-16.  Monte Carlo Simulation Results 

 

Consistent Percentile Method 

Typical monte carlo simulations include the sampling of values for multiple random 

variables.  It is important that the sampling technique produces numbers in the event tree 

that are internally consistent and logical.  Consider a simple event tree with two flood 

loading partitions and one potential failure mode.  If the probabilities of failure are 

independently sampled for each loading partition, it is possible that, for a particular 

iteration, the probability of failure sampled for the smaller load partition can be greater 

than the probability of failure sampled for the larger load partition.  This results in an 

internal inconsistency because the probability of failure should logically increase as the 

load increases.  The end result is that the uncertainty portrayed by the monte carlo 

simulation results may not be correct and could potentially misinform decision makers.  

Similar issues can occur with random variables in other event tree branches.  For 

example, independent sampling of flood or seismic loading parameters can cause internal 

consistency errors.  A peak ground acceleration that is sampled for a smaller load 

partition could end up being greater than the peak ground acceleration that is sampled for 

a larger load partition. 

 

The consistent percentile method is one technique to improve internal consistency during 

a monte carlo simulation.  With this method, a random sample is obtained for an entire 

relationship such as a flood or seismic hazard curve.  A random number greater than or 

equal to zero and less than or equal to one is generated for each iteration of a simulation.  

This random number represents a random sample of a percentile or confidence limit 

value associated with the random variable.  This percentile can be applied to the 

uncertainty distribution about the relationship to obtain a random sample of the curve.   
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Consider an example where the mean seismic hazard is described by the relationship in 

Figure I-5-17.  The uncertainty is characterized by the 5
th
, 16

th
, 50

th
, 84

th
, and 95

th
 

percentile curves.  

 

 
 

Figure I-5-17.  Seismic Hazard Curves 

 

The risk analyst has decided to partition the loading for the event tree based on peak 

ground acceleration using the bins summarized in Table I-5-1.  As a result, the seismic 

hazard curves need to be extended to the maximum PGA value of 0.7 so that annual 

exceedance probabilities can be obtained for each partition and for each percentile.  After 

consulting with the project seismologist, the extended curves presented in Figure I-5-18 

are obtained. 
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Table I-5-1.  Seismic Loading Partitions 

Partition Lower Bound 

(PGA) 

Upper Bound 

(PGA) 

1 0 0.03 

2 0.03 0.08 

3 0.08 0.2 

4 0.2 0.4 

5 0.4 0.7 

6 0.7 n/a 

   

 

 
    Figure I-5-18.  Extended Seismic Hazard Curves 

 

Annual exceedance probability values are then tabulated for each percentile at each of the 

bounding pga values.  The concept is illustrated in Figure I-5-19 for a PGA bounding 

value of 0.2g and the results for all of the bounding pga values are summarized in Table 

I-5-2. 
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Figure I-5-19.  AEP Values for 0.2g Bounding Value 

 

Table I-5-2.  Summary of AEP for Each Percentile at Bounding PGA Values  

PGA AEP 5th AEP 16th AEP 50th AEP 84th AEP 95th 

0.03 5.04E-03 6.31E-03 7.78E-03 1.00E-02 1.43E-02 

0.08 4.90E-04 7.43E-04 1.04E-03 2.63E-03 3.48E-03 

0.2 2.62E-05 5.80E-05 9.87E-05 2.36E-04 4.32E-04 

0.4 6.01E-07 3.56E-06 7.32E-06 2.54E-05 6.24E-05 

0.7 2.09E-09 5.34E-08 1.48E-07 1.58E-06 8.47E-06 
 

The tabulated values are used to develop a probability distribution of AEP for each of the 

bounding pga values.  This can be accomplished by simply using the percentile values 

from the table and interpolating for intermediate percentile values.  Another option is to 

fit a distribution to the percentile data.  In either case, the risk analyst must make some 

assumptions to ensure that the AEPs are always greater than or equal to zero at the 0 

percentile and always less than or equal to one at the 100 percentile. 

 

In this example, the @Risk software is used to fit an analytical distribution to the 

percentile data using the ‘Cumulative (X,P) Points’ type in the ‘Fit Distributions to Data’ 

function.  The risk analyst needs to select and appropriate distribution based on 

experience and the characteristics of the data.  A log normal distribution is selected as a 
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reasonable fit to the data for this example based on judgment and visual inspection of the 

distribution fitting results.   Selection of the log-normal distribution ensures that the 

sampled AEP values will always be greater than or equal to zero.  The fitted distribution 

can be truncated at an AEP of 1 to ensure that sampled AEP values will always be less 

than or equal to one.  The fitted distribution for a pga of 0.2g is illustrated in Figure I-5-

20.  Parameters for the fitted distributions at each of the bounding pga values are 

summarized in Table I-5-3. 

 

    

Figure I-5-20.  Log Normal Distribution Fit for 0.2g 

 

 

Table I-5-3.  Summary of Parameters for Log Normal Distribution Fit  

PGA Mean AEP 
Standard 

Deviation of 
AEP 

0.03 8.08E-03 1.97E-03 

0.08 1.46E-03 1.02E-03 

0.2 1.41E-04 1.22E-04 

0.4 1.43E-05 2.01E-05 

0.7 1.14E-06 6.13E-06 
 

The event tree in Figure I-5-21 has been set up using PrecisionTree and @Risk to 

perform the consistent percentile calculations for this example.  Sample equations are 

shown to illustrate the calculation procedure.  The ‘RiskUniform’ distribution is used to 

sample a single random percentile value.  The random percentile is applied to each of the 

PGA bounding values so that a consistent set of AEP values can be obtained.  The 

‘RiskLognorm’ distribution is used to define the AEP distribution for each PGA 

bounding value using the parameters in Table I-5-2.  An AEP value at each PGA 

bounding value is calculated for the random percentile based on the AEP distribution.  

This is accomplished using the ‘RiskTheoPercentile’ function.  The resulting random 

AEP values are then applied to the load partitions in the event tree.  The probability for a 

partition is obtained by subtracting the AEP at the upper bound from the AEP at the 

lower bound.  Results for a 10,000 iteration @Risk simulation are summarized in Figure 

I-5-22.  The distribution of the randomly sampled AEPs for the 0.2g bounding PGA value 

is shown to demonstrate that the model reproduced the distribution in Figure I-5-20.      
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Figure I-5-21.  Event Tree for Consistent Percentile Method 

 

 



I-5-27 

 

 

Figure I-5-22.  Model Validation by Comparing Samples to Defined Distribuiton 

Software Tools 

Event tree models and calculations can be prepared using generalized commercial 

software, custom built spreadsheets, or software specifically designed for dam and levee 

safety analysis.  USBR typically uses the Decision Tools Suite by Pallisade.  The 

Decision Tools Suite includes @Risk for monte carlo simulation, Precision Tree for event 

tree analysis, and several other tools that support statistical analysis.  These software 

packages are fully integrated with Microsoft Excel for ease of use and flexibility.  

USACE typically uses a custom software package called DAMRAE (Dam Risk Analysis 

Engine).  The DAMRAE software includes an event tree construction and calculation 

algorithm specifically designed for dam and levee risk analysis.  Continuous variable 

types allow for improved numerical precision with minimal effort.  The project 

framework facilitates the analysis and comparison of multiple scenarios within a single 

model.  Non-probabilistic branch types can be included within the event tree itself.  The 

software handles post processing calculations including preparation of f-N and F-N plots.  

DAMRAE does not currently include uncertainty analysis; however, this capability is 

planned for a future release.   

 

Exercise 

Develop an event tree given the following potential failure mode description. 

 

As a result of high reservoir levels and an increase in uplift pressure on the old shale 

layer slide plane or a decrease in shearing resistance due to gradual creep on the slide 

plane, sliding of the buttress initiates.  Significant differential movement between two 

buttresses occurs causing the deck slabs to unseat from their simply support condition on 

the corbels.  Breaching failure of the concrete dam through two bays results followed by 

progressive collapse of the adjacent buttresses due to the lateral loading. 
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